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A new lattice truncation scheme for the finite difference time domain approach to the 

solution of Maxwell’s equations has been developed. The problem space is truncated near the 

sources and the field components on its boundary are generated from those field values known 

at retarded times on an interior surface one cell from it with an integral representation of the 

electromagnetic field. The numerical implementation of this global lookback scheme is 

discussed. Examples which have been used to determine its characteristics and its validity are 
given. 

1. INTRODUCTION 

An approach to the modeling of time dependent elctromagnetic problems which 
may involve nonlinear, anisotropic, and inhomogeneous media effects is a self- 
consistent finite difference time domain (FD-TD) solution of Maxwell’s equations. 
The FD-TD approach is attractive because it exchanges the complexity of those 
problems for labor by a computer. Various FD-TD techniques and successes have 
been documented [l-13 1. 

Approximate solution of Maxwell’s curl equations in Cartesian geometry is accom- 
plished with the FD-TD approach by discretizing the problem space whose coor- 
dinates are (x, y, z) into a finite difference lattice composed of rectangular cells with 
dimensions (dx, dy, dz) and by discretizing time into invervals of length At. A space- 
time point on the lattice is defined to be (xi, yj, zk, I,); hence, it can be labeled simply 
by its indices (i,j, k, n). The components of the electric and magnetic field vectors are 
positioned about a cell of the lattice as shown in Fig. 1. The finite difference approx- 
imations of those equations are given in Fig. 2. The electric and magnetic fields are 
evaluated at alternate half-time steps. This permits integration of the FD-TD 
equations forward in time in the usual “leapfrog” fashion as illustrated in Fig. 3. 
Furthermore, centered difference expressions can be used for both the space and time 
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FIG. 1. Positions of the field components about a unit cell of the finite difference lattice. 

derivatives to achieve second-order accuracy in the space and time increments 
without requiring simultaneous equations to compute the fields at the latest time step. 

The (explicit) finite difference method has several practical difficulties. To ensure 
accuracy of the computed spatial derivatives, the cell size must be suffkiently small 
compared to a wavelength. However, to guarantee the stability of the time-stepping 
algorithm, the Courant stability condition must be satisfied: The lattice spacings 
Ax, Ay, and AZ must be chosen so that (R/At) > U, where the distance parameter 
R = (Ax-* +Ay-* -AZ-~)-“*; i.e., the velocity of numerical signals in the lattice 
must not be less than the velocity of light in the medium being modeled. Thus, 
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because of computer time and expense limitations, there is a limit to the number of 
time steps, hence, fine details (maximum resolution = one cell) one can model in a 
problem. Subsequently, numerical dispersion occurs because signals whose 
wavelengths are smaller than a unit cell size are not propagated in the lattice (high- 
frequency trapping). Furthermore, because of computer storage limitations, the lattice 
must be truncated to a finite size. However, the field components at the lattice trun- 
cation planes cannot be determined directly from the differenced curl equations. They 
must be computed using an auxiliary truncation condition. 

Proper truncation of the lattice requires that any outward-travelling waves 
disappear at the lattice boundary without significant reflection during the repeated 
time stepping of the algorithm. Improper truncation would cause errors for all time 
steps after the spurious numerical reflections return to the vicinity of the observation 
point. This is illustrated in Fig. 4. Since Maxwell’s equations are hyperbolic, causal 
information is propagated from a point in a forward light cone. A signal from P 
reaches the improperly truncated lattice boundary S at I = r, ; its reflected signal 
reaches P at t = r2. For closed region problems where the boundary is a perfectly 
conducting metal, the truncation conditions are straightforward: the tangential 
electric and normal magnetic fields at the conducting surfaces are zero. For open 
region problems existing codes treat the truncation only approximately. The standard 
approximate truncation or boundary schemes include 13-l 7 ] : 

MaxwelPs Equations 

$,H, -t o*H, = -(a>,E: - a:E,.) - K,, piT,H, + o*H,. = -@;E., - 3,E;) - K, . 

,ui3,H; + o*H, = -(8,E,. - ayE,) -K,, 

d, E, + aE, = (a,H: - 8; H,,) -J,, ei?,E, + oE,. = (a;H, - d,H,) - J,, 

eB,E, + aE; = (a,H, - 3,.H,r) -J, 

Field Component Locations (lattice size = N,r Ax x N, Ay x N, AZ) 

H.Xi. k) = H,~,Y~+ I,2, zk+ ,,*, n At) 

i=l,..., N,+l, j=l,..., NY, k=l,..., N,; 

H~(i,j,k)=H,(xi+,,,,yjj,z,+,,,,nAt) 

i= l,..., N,, j= I,..., NY+ 1, k = I,..., N,; 

HXi,j, k)= ffz(xi+ l;>,Yj+,/2,Zk, ndt) 

i=l,..., N,, j=l,..., N,., k=l,..., N,+l; 

EXj, k) = E&xi+ t,z,~j, zk, (n + l/2) At) 

i = I ,..., N,, j = I,.,., N,+ 1, k= l,...,N,+ 1; 

EX,j, k) = Ey(xi,Yj+ 1,2r zk, (n + 1/2)At) 

i= I,..., N,+ 1, j= l,..., N,., k= l,..., NI+ 1; 

.W,j, k) = Ez(x,,Yj, zk+ 1,2r (n t 1/2)At) 

i = I,..., N, + 1, j.= I,..., N, + 1, k = l,..., N:. 

FIG. 2. Three-dimensional FD-TD equations in rectangular coordinates. 
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Finite Difference Equations (nonuniform grid allowed) 
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where 

and (K”,- ‘, K:- ‘, KY-‘) are all evaluated at the desired H-component locations, and where 

and (J:- ‘, Jz- I, .T- ‘) are all evaluated at the desired E-component locations. In free-space 

i=K=O, CJ=0*=0, 

FIG. 2-Continued. 
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FIG. 3. “Leapfrog FD-TD representation“ of the free-space Maxwell curl equation 

-/q,8,H,=3,E,.-ayE,. 

(I) Large simulation volume. The problem space is made large enough to 
generate solutions within a required time window before reflections from the inade- 
quately treated boundaries arrive at the observation point. 

(2) Absorptive boundaries. An isotropic, lossy medium is introduced in the 
region exterior to the lattice boundary to aid in reducing the effective reflection coef- 
ficient of the lattice truncation planes. An anisotropic electric loss crex, and an 
anisotropic magnetic loss a,*,, are commonly specified there; they appear only in the 
curl equations 

curl I7 = u,,~ E + EoaE/at, curl E= +J&, i? - poacl/at, 

where so and ,B, are, respectively, the free-space permittivity and permeability. The 
wave is reduced in amplitude upon reaching the lattice truncations and is progres- 
sively damped as its remnants reverberate between the lattice planes. Since the 
effective steady-state wave impedance of this medium is 

selecting a,*,, = ,u,,u,,~/F~ reduces it to the free-space impedance Z, = (&/E~)“*. 
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FIG. 4. Truncation boundary reflections. 

(3) Field matching techniques. The boundary field values are extrapolated 
from cells adjacent to the boundary with approximate formulas. Lookback and 
impedance outer boundary schemes are commonly employed. The former is usually 
based on a far-field approximation; i.e., far from any sources the fields look like 
spherical waves 

R =f(t - r/c)(h/r), E = Z,f(t - r/c-)(6/r), 

where the unit vectors e^ = h” x r^ and r^ = J/r, J being the position vector of the obser- 
vation point. This scheme is also known as the “radiating boundary condition.” It is 
a lookback scheme because the retarded time values of the fields at interior points 
must be used. The impedance scheme assumes simply that E= Z,(H x F) on the 
outer boundary; i.e., that the field locally looks like an outward traveling plane wave. 
Other matching schemes such as averaging over field values at neighboring lattice 
points have also been utilized. In addition, several local, higher order approximate 
schemes have been developed [ 17-201. 

The approximations these standard schemes incorporate create certain inherent 
deficiencies. The large simulation volume scheme has excessively large storage 
requirements to achieve late observation times. Reflections, although significantly 
reduced in magnitude with the absorptive boundary scheme, are still present in the 
FD-TD lattice. The radiating boundary scheme necessitates the mating of a spherical 
wave representation to the Cartesian lattice. It requires a large simulation volume to 
be rigorous because the electromagnetic field is approximated accurately by a 
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spherical wave only very far from its source. Because locally only a minute portion of 
a general wave front resembles a plane wave, the impedance boundary scheme is 
valid only in a very fine lattice. The latter (because of the Courant stability 
condition) requires an excessively large number of computational time cycles to 
achieve late observation times. 

To overcome many of these imperfections, a new accurate treatment of the lattice 
truncation conditions for three-dimensional open region problems has been developed. 
This scheme is based upon the numerical implementation of a discrete form of an 
exact global lookback representation of the electromagnetic field. The mathematical 
formulation of this global lookback scheme and its numerical implementation will be 
discussed, respectively, in Sections 2 and 3. The examples used to validate the 
resultant algorithm will be examined in Section 4. A summary of the results and 
suggestions for future investigations are given in Section 5. 

2. EXACT GLOBAL LOOKBACK REPRESENTATION 

Consider the representation of an electromagnetic field in terms of its values on a 
closed surface [21]. The physical problem space is divided into two separate volumes 
U and V as shown in Fig. 5. The closed surface S is the boundary of those regions; 
its normal fi points into V. The interior region U encompasses all of the sources and 
medium inhomogeneities, nonlinearities, and anisotropies. The observation point r lies 
in the free-space exterior region V. The point S lies on S. Assuming that the fields 
satisfy the Sommerfeld radiation condition and for the moment that electric and -- 
magnetic currents (.I, K) and charge densities (p,, p,) are located in V, the electric 
field at r at time t is given by the expression [ 211 

FIG. 5. Geometry of the exact global lookback representation of the field. 
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where ~‘3, E a/at and the step function 

8(x)= 1, if x > 0, 

= 0, if x < 0, 
and where 

R = IF- Sl, 

It = (Y-5)/R, 

r = R/c, 

t, = t - 5, 

b-1 =.m fR). 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

The volume integral terms represent the contributions to the field from the source 
distributions within V. The surface integral represents the contributions to the field of 
the sources not in V. The magnetic field representation is obtained by duality 

E+H-+-E, T+K+-J7 

Pe+Pm+-Pr, &-+/l--t&. 

Since V is considered to be free space, the source terms are identically zero and the 
field expressions reduce to 

I@, t) = 
1 

dS 
s 

n x ~a,~o~i) +(n. @+~a+$- R 
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, 

^ 
ITi(r; t) = 

I 
dS 

S 
f$ /(fix [H+~a,H])x-$- 

^ 

(2.8) 

(2.8’) 



368 ZIOLKOWSKI, MADSEN, AND CARPENTER 

Note that those source terms would be needed if a field/particle problem were 
considered that allowed particles in V. 

A particular component of the fields (2.8) and (2.8’) is obtained by considering 
their projections onto the desired direction. Let ~7 represent the unit vector along that 
direction at the observation point. The desired expressions are p. ,?(F, t) and 
~7. H(F, t). With several vector identity manipulations they can be represented as 

(2.9’) 

The explicit components corresponding to Eqs. (2.9) and (2.9’) are given in 
Appendix A. 

Equations (2.9) and (2.9’) have the following symmetry properties: Let pi 
(i = 1, 2, 3) represent, respectively, the unit vectors 2, y^, and i. Thus, the term 
pi + I?= Ei is the ith component of the electric field. With more vector manipulations 
Eq. (2.9) can then be rewritten as 

Ei(r; t) = i {&(r; s; t) Ej(s; fR) +/I& (I; s; t) H,(s; fR)}, (2.10) 
j:l 

where the operators 

(2.11) 

(ID is the identity operator) are such that 

A{ = 6; + c;; (2.13) 

and the operator 

&(r; s; t) = 
I 

dS 
e(t - t) n 

- ’ (Pi X Pj) iaf 1. (2.14) 
s I 4~ R i 

Clearly, the operator c?{ is symmetric (8: = 8;) and diagonal (pi . pi = 6i,i, 
Kronecker’s delta). On the other hand, the operators 6:: and & are antisymmetric 
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(e.g., &< = - 5:). The same symmetry relations pertain to the analogous version of 
Eq. (2.9’), 

Hi(F, t) = i (Aj(F, g t) Hj(S, CR) - F&l; s; t) Ej(F, CR)}. (2.15) 
j=l 

Notice that expressions (2.9) and (2.9’) constitute an exact global lookback 
representation of the electromagnetic field resulting from sources enclosed by S. They 
are lookback expressions because the field values at any point r in V are calculated 
from field values on S at retarded times. Furthermore, they exhibit a global depen- 
dence; a field component at r is calculated from field values at every point on S. The 
FD-TD lattice truncation scheme to be described in Section 3 is formulated with 
discrete versions of these exact global lookback expressions. 

3. NUMERICAL IMPLEMENTATION 

An FD-TD lattice truncation scheme that is based upon the exact global lookback 
expressions has been constructed with an approach analogous to the successful 
technique formulated by McDonald and Wexler [22] for elliptic problems. As shown 
in Fig. 6, a boundary surface S (a rectangular cylinder for the Cartesian lattice) is 
specified that closely surrounds the region of interest. The electric or magnetic field 
values on the outer boundary surface C which is located in free-space one cell away 
from S, are respectively calculated with discretized versions of Eq. (2.9) and (2.9’). 
Thus, the field values on Z are determined from the field values on S at retarded 
times. Since the field values on C are supplied external to the FD-TD solution 

Regm of (1111-> IntereSt 

-s 
/ 

FIG. 6. Exact global lookback scheme configuration. 
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process, they effectively truncate the FD-TD lattice. The particular choice of which 
field components should be specified on Z depends on the representation of the 
sources within S. As will be discussed in Section 4, it was found numerically that 
electric (magnetic) dipole sources can be properly represented in the FD-TD lattice 
by specifying magnetic (electric) field values on a small surface within S surrounding 
the dipole location and that the lattice is properly truncated by specifying the same 
field components on Z. 

Note that because it incorporates Eqs. (2.9) and (2.9’) this lattice truncation 
technique is a global lookback scheme. The global lookback scheme is particularly 
appealing because it eliminates the need for a large simulation volume. The surface S 
can be placed in close proximity to the region of interest, the surface Z being 
separated from it by one cell. Furthermore, unlike most standard schemes, it is based 
upon an exact representation of the field, not an approximate one. 

The calculational flow of the FD-TD process is analogous to the one employed in 
Holland’s THREDE code 131. Major modifications of that code were made to 
accommodate the global lookback scheme. Although only a uniform lattice was 
actually considered in the validation problems, the implementation of that scheme 
included the nonuniform lattice capability of the original THREDE code. 

To compute any of the desired field values (E,, E,, EI) or (H,, H,,, Hz) at their 
appropriate locations on C (for example, the values of E, and E,, on the faces of C, 
where z = constant), a complete surface integral over the surface S of the inner 
concentric rectangular cylinder must be performed. Both of the integrals (2.9) and 
(2.9’) consist of six distinct integrals, one over each of the six faces of S. Each of 
those faces is already decomposed into rectangular patches or zones by the FD-TD 
lattice. Thus, those integrals are calculated in a local manner zone by zone, and the 
results are summed to generate the entire surface integral. 

Both of the surface integrals (2.9) and (2.9’) required all six field component 
values (E,, E,, E,; H,, H,, Hz) on S at times from the current time value t 
backwards in time to the maximum retarded time value 

t Rmax = t - uL,xYc~ (3.1 f 

where if the outer surface Z has the dimensions (N, Ax, NY Ay, NZ AZ) measured from 
the origin (x, , y,, zl), 

R max = KXN, - x2Y + (YN, - Y*12 + kv, - z21* 1 “2 (3.2) 

the length of the diagonal from a corner of S to an opposite corner of C. All of these 
field values are computed and stored at all of the points on the inner surface S where 
the zone lines intersect. To obtain the field values at a zone-line intersection, the 
usual field values which exist at the centers of the zone edges and faces are averaged 
according to the following scheme: Referring to Fig. 7a, if the field values are known 
at the mid-edge points (b and d) and the distances between the zone line points (a, c) 
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FIG. 7a. Two-term field component averaging. 

and (c, e) are, respectively, Ax, and Ax,, the desired field values at the point c,f(c), 
is computed from the field values S(b) and f(d) as 

f(c> = f(b) - Ax, +.I-(4 ' Axi 
’ Ax, t Ax, (3.3) 

Similarly, referring to Fig. 7b, if the field values are known at the zone center points 
1, 2, 3, and 4 and the distances between the zone-line intersection points (a, b), (b, e), 
(b, c), and (c, d) are, respectively, Ay,, Ay,, Ax,, and Ax?, the desired field value at c 
is taken to be 

f(c) = 
g( 1,3) . Ax, + g(2,4) . Ax, 

Ax, + Ax, ’ 

~.A ~.A 

AYl AYl .’ .* .’ .* 

1 1 6 6 .C .C ..D ..D 

1 1 
Ay2 Ay2 3 3 . . .4 .4 

E E 

--IX,..--JX2- --IX,..--JX2- 

FIG. 7b. Four-term field component averaging. FIG. 7b. Four-term field component averaging. 

(3.4) 
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g(l 
3 

3) = f(l) . AY* +f(3) . AY, 

4, + AY, 

and 

g(2 

, 
4) = .I-@) . AYZ +f(4) . AY, 

AY, + AY, 

(3Sa) 

(3Sb) 

The required time derivatives of the field components are generated by accessing the 
two back-stored values of the field which bracket the retarded time of interest and 
then numerically differentiating (dividing the two values by At). To avoid ambiguity, 
if a time derivative value at one of the past lattice time points is needed, the 
convention of using the slope to the left of the desired time point was adopted. 

The surface integral over a zone face is calculated by evaluating the integrand at 
each of the four corners of the zone face. Next, an approximating bilinear function is 
fit using the four integrand corner values and the zone integral is then easily 
calculated. Each corner point will have its own field values, R, t, , etc., hence, its own 
contribution to the zone integral. Note that many quantities computed for one zone 
can be saved and utilized for adjacent zones. For example, consider a zone Z on a 
face z = constant whose corners are 1 = (xi, yi), 2 = (xi+ , , yi), 3 = (xi, Y,~+ ,), and 
4=(x. , + r, yj+ r ). The bilinear function 

z(x,y)=a,+a,x+a,y+a,x~~ (3.6) 

is fit to the corresponding four values of the integrand: I,, I,, I,, and I, ; i.e., 

a,=z,, 
I* -1, 

at=79 
1, - 1, 

a2=dy,3 
a‘$ = 

I, -I, - I, + ZJ 

AXi AY,i 
. (3.7) 

The integral of Z(x, y) over that zone is simply 

Axi Ay. 

(3.8) 

The desired, total integral over S follows readily. 
All of the numerical computations were performed on a Cray-1 computer. The 

global lookback code, which was only partially optimized, backstored to fXmax every 
field value. The Cray-1 provided ample memory space to accommodate all of those 
backstored field values in a problem of modest size. No attempt was made to track 
the variation between points on ,?Y of the maximum time backstorage required by the 
corresponding field value calculations. Furthermore, the global lookback code was 
not extensively vectorized. The sum over the surface S was performed for each field 
value at a point on C rather than computing all of the values simultaneously (in 
parallel), hence, summing only once. Other considerations such as incorporating the 
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symmetry properties given in Section 2 or employing a more general interpolation 
scheme (the general discretized form of the exact global lookback field representation 
is given in Appendix B) also were not attempted. Consequently, the code was rather 
expensive to run. Because our intent was only to verify the validity of the global 
lookback scheme, a comparison of its cost with any of the standard approximate 
truncation schemes was not made. 

4. VALIDATION 

To validate the global lookback algorithm, a three-dimensional problem was 
sought which had an exact analytical solution. It was felt that it would be inadequate 
to characterize the behavior of the global lookback scheme with the usual procedure 
which would compare its results with those obtained with a large simulation volume. 
The latter is limited by its clear time (the time at which reflections from the outer 
boundary reach the observation point) and only produces an approximate solution. It 
was decided that a time-varying electric or magnetic dipole would be a suitable test 
case. 

An electric dipole oriented along the z axis is assumed to be located at the center 
of the finite difference lattice. Its dipole moment is taken to be 

ji(F, t) =f(t) 6(F) z”. 

The resultant fields are 

qr t)= {3(+*z^)r”-z”} 
1 

47x, r3 
[f+ ra,j-] + {ycy [a:.!-], (4-l) 

0 

zT(r; t) = -9 [3,f+ ra;f], 

where cr = ]rl = r and [f] =f(t - r). Their components are given explicitly in 
Appendix C. 

The first specific problem treated was a smooth turn-on of the field. Since the fields 
depend at most on the second derivatives off, this effect is achieved with a function 
that is zero for t < 0, nonzero for t > 0, and at least C* at t = 0. We chose 

f(t) = 0, 

= 1 - exp(-at3/3), 

t < 0, 

t 2 0, 
(4.3) 

where the rise time of the pulse is governed by the real constant a. In all of the 
examples considered a fast rise time was desired and a = 2.0 x 1O23 sec3. The dipole 
was located at the center of 9 x 9 x 9 lattice whose cells have the dimensions 
dx = dy = AZ = 0.5 m. The time step was set equal to the Courant limit. The electric 
dipole was represented in the FD-TD lattice by specifying the exact magnetic field 
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outer 
boundary 
of FD-TD 
lattice 

FIG. 8a. Configuration of the dipole field problems. 

values (4.2) on the surface of a 3 x 3 X 3 cube centered around its location. This 
configuration is depicted in Figs. 8a and b. Figure 8b indicates the relative location of 
the inner boundary, the integration surface S and the outer boundary C. Note that 
this specification is dual to the one employed in scattering problems where the 
tangential components of the scattered electric field on a perfectly conducting surface 
are set equal to the negative of the incident electric field. This specification also effec- 
tively isolates the field components in the interior of the inner cube; hence, they are 
set equal to zero. The magnetic fields were calculated at the outer boundary of the 
lattice with the global lookback scheme (2.9’). Note from Eqs. (4.1) and (4.2) that 
the magnetic fields are expected to reduce to zero when j’(t) reaches its constant 
value 1 and that the electric fields reach a constant, large nonzero value. Typical 
results for an “interior” point in the region between the inner and outer boundary 
away from any of the many symmetry planes and for a point on the outer boundary, 
as indicated in Fig. 8b, are given, respectively, in Figs. 9 and 10. In particular, the 
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Inner bou ---- 
Y ’ I 
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surface s 

FIG. 8b. Cross-sectional view of the configuration of a dipole field problem. 
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FIG. 9a. Comparison of the exact E, values (-) with those calculated with the global lookback 
scheme (. .) at an interior point for a turned-on electric dipole. 
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FIG. 9b. Comparison of the exact E, values (-) with those calculated with the global lookback 
scheme (. .) at an interior point for a turned-on electric dipole. 
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FIG. 9c. Comparison of the exact E, values (-) with those calculated with the global lookback 
scheme (...) at an interior point for a turned-on electric dipole. 
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FIG. 9d. Comparison of the exact H, values (-) with those calculated with the global lookback 
scheme (.. .) at an interior point for a turned-on electric dipole. 
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FIG. 9e. Comparison of the exact H, values (-) with those calculated with the global lookback 
scheme (...) at an interior point for a turned-on electric dipole. 
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FIG. 9f. Comparison of the exact H, values (-) with those calculated with the global lookback 
scheme (. .) at an interior point for a turned-on electric dipole. 
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FIG. 10a. Comparison of the exact H, values (-) with those calculated with the global lookback 
scheme (...) at a boundary point for a turned-on electric dipole. 
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FIG. lob. Comparison of the exact H, values (-) with those calculated with the global lookback 
scheme (. .) at a boundary point for a turned-on electric dipole. 
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FIG. 10~. Comparison of the exact E, values (-) with those calculated with the global lookback 
scheme (. .) at a boundary point for a turned-on electric dipole. 
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boundary point was located on the face of Z, where z = +2.25m. Thus, only the H, 
and H, components were calculated there with the global lookback scheme. The E, 
values folow from those components with the FD-TD process. The other components 
(E,, E,, Hz) exist at points outside of Z and are not computed. The values calculated 
with the global lookback code are represented by (a..), the exact values by (-). The 
clear time for this problem is at most 10 ns. As shown, excellent agreement is 
achieved out to 100 ns. Figures 11 and 12 show the fields at the points used in, 
respectively, Figs. 9 and 10 as computed with the original THREDE code in a 
29 x 29 x 29 lattice truncated with null tangential electric field components on its 
outer boundary surface. Clear time in that case is about 45 ns. The reflections from 
the outer boundary (which clearly degrade the signal) are apparent. 

The second problem studied was one involving a driving function that turned on 
and off. The response is a pulse that travels through the FD-TD lattice. The 
particular forcing function wasf(t) = g(Pt), where /I = 2.0 x 10’ sect ‘, and where 

g(x) = 0, x<o, x>l, 

= 32x3 -48x4, 0 <x < l/2, (4.4) 

= 32( 1 - x)” - 48( 1 - x)~, 1/2,<x< 1. 

The results at the same point locations as in the first case are given in Figs. 13 and 
14. Because of the coarse gridding used, discontinuities seem to appear in the exact 
fields where the on-to-off transition in f(t) occurs (at t = 25 ns). Nonetheless, the 
global lookback code results approximate the exact solutions extremely well. The 
oscillations at late times represent high-frequency noise and are also a consequence of 
the coarse gridding. (Note that lattice resonance oscillations in a lattice with cells of 
length 0.5 m occur at 300 MHz and with a period of 3.33 ns. The late-time 
oscillations in the figures coincide with these values.) 

Analogous results were obtained for the dual problem: a magnetic dipole with 
electric field values set on the inner and outer boundaries. 

It was discovered unexpectedly that a linear growth appears in certain field 
components when the specification of the field values on the boundary surfaces is not 
consistent with the chart shown in Fig. 15. Consider, for instance, the electric dipole 
problem. If the (exact) electric field values were set on the inner boundary and the 
magnetic field values were calculated on the outer boundary with the global lookback 
scheme, the magnetic field components exhibited the linear growth. Furthermore, the 
effect was more apparent near the inner boundary. Analogous but less severe 
behavior was also noticed when the electric dipole was represented by magnetic field 
values on the inner boundary and the lattice was truncated with global lookback 
electric field values. In this case the effect was more noticeable for points near the 
outer boundary. Numerical experiments with the global lookback code and with the 
original THREDE code indicated that this anomalous behaviour was due strictly to 
truncation errors and not to any code instability. The differences at neighboring 
lattice points on the inner and/or outer boundary surfaces of the specified electric 
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FIG. 1 la. Comparison of the exact E, values (-) with those calculated with a 29 X 29 x 29 lattice 
and E tan = 0 outer boundary condition version of the THREDE code (...) at a point interior to C for a 
turned-on electric dipole. 
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FIG. 1 lb. Comparison of the exact E, values (-) with those calculated with a 29 x 29 x 29 lattice 
and E,,, = 0 outer boundary condition version of the THREDE code (. .) at a point interior to Z for a 
turned-on electric dipole. 
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FIG. 1 lc. Comparison of the exact E, values (-) with those calculated with a 29 x 29 x 29 lattice 
and E,,, = 0 outer boundary condition version of the THREDE code (...) at a point interior to Z for a 
turned-on electric dipole. 
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FIG. 1 Id. Comparison of the exact H, values (-) with those calculated with a 29 x 29 x 29 lattice 
and E f8n = 0 outer boundary condition version of the THREDE code (.. .) at a point interior to C for a 
turned-on electric dipole. 
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FIG. 1 le. Comparison of the exact H, values (-) with those calculated with a 29 x 29 x 29 lattice 
and E tan = 0 outer boundary condition version of the THREDE code (...) at a point interior to C for a 
turned-on electric dipole. 
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FIG. 1 If. Comparison of the exact H, values (-) with those calculated with a 29 X 29 X 29 lattice 
and E,,, = 0 outer boundary condition version of the THREDE code (...) at a point interior to Z for a 
turned-on electric dipole. 
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FIG. 12a. Comparison of the exact H, values (-) with those calculated with a 29 x 29 x 29 lattice 
and E,,, = 0 outer boundary condition version of the THREDE code (...) at a point on C for a turned- 
on electric dipole. 
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FG. 12b. Comparison of the exact H, values (-) with those calculated with a 29 x 29 x 29 lattice 
and E,,, = 0 outer boundary condition version of the THREDE code (. .) at a point on C for a turned- 
on electric dipole. 
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FIG. 12~. Comparison of the exact E, values (-) with those calculated with a 29 x 29 x 29 lattice 
and E,,, = 0 outer boundary condition version of the THREDE code (...) at a point on C for a turned- 
on electric dipole. 
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FIG. 13a. Comparison of the exact E, values (-) with those calculated with the global lookback 
scheme (...) at an interior point for a turned-on-and-off electric dipole. 
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FIG. 13b. Comparison of the exact E, values (-) with those calculated with the global lookback 
scheme (.‘.) at an interior point for a turned-on-and-off electric dipole. 
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FIG. 13~. Comparison of the exact E, values (-) with those calculated with the global lookback 
scheme (...) at an interior point for a turned-on-and-off electric dipole. 
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FIG. 13d. Comparison of the exact H, values (-) with those calculated with the global lookback 
scheme (. ..) at an interior point for a turned-on-and-off electric dipole. 
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FIG. 13e. Comparison of the exact H, values (-) with those calculated with the global lookback 
scheme (. ..) at an interior point for a turned-on-and-off electric dipole. 
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FIG. 13f. Comparison of the exact H, values (-) with those calculated with the global lookback 
scheme (. ..) at an interior point for a turned-on-and-off electric dipole. 
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FIG. 14a. Comparison of the exact H, values (-) with those calculated with the global lookback 
scheme (...) at a boundary point for a turned-on-and-off electric dipole. 



GLOBAL LOOKBACK TRUNCATION SCHEME 

800000 - 800000 - 

700000 700000 

600000 - 600000 - 

500000 - 500000 - 

900000 - 900000 - 

300000 - 300000 - 

200000 - 200000 - 

l00000 - l00000 - 

0 o- 

-10000c- -10000c- 

-2ooooc- -2ooooc- 

-3ooooc- -3ooooc- 

-4ooooc- -4ooooc- 

-5ooooc- -5ooooc- 

-6ooooc- -6ooooc- 

401 

FIG. S4b. Comparison of the exact H, values (-) with those calculated with the global lookback 
scheme (...) at a boundary point for a turned-on-and-off electric dipole. 
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FIG. 14~. Comparison of the exact E, values (-) with those calculated with the global lookback 
scheme (. . .) at a boundary point for a turned-on-and-off electric dipole. 
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FIG. 15. Specific field value assignments necessary for modeling dipole fields with the global 
lookback scheme. 
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FIG. 16. Linear growth in an H, component resulting from truncation errors (coarse lattice). 
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field values were significantly different from zero in the coarse lattice to act as 
sources in the magnetic field component difference equations. Although it is relatively 
small initially, the linear growth will eventually manifest itself strongly at later times. 
Refinement of the lattice greatly reduces the effects of this error as shown in Fig. 16. 
The linear growth in the H, component when the electric dipole is modeled with 
electric field values on the inner boundary is illustrated. The curves were generated 
with the THREDE code with a 29 x 29 x 29 and a 47 x 47 x 47 lattice and with 
E,,, = 0 outer boundary conditions. The behavior is indicative of truncation errors; it 
is not connected with the global lookback scheme. 

5. CONCLUSIONS 

An FD-TD lattice truncation scheme based upon an exact global lookback 
representation of the electromagnetic field has been developed. The success (in prin- 
ciple) of a numerical implementation of this global lookback scheme has been 
demonstrated. A considerable amount of optimization of the present algorithm and 
(most likely) several simplifying approximations will be necessary to make it an 
economically viable FD-TD technique. Several possible modifications of the code 
have been suggested. If it becomes economically competitive with the standard 
approximate approaches, however, it will be quite useful for a variety of open region 
problems. The ability to locate the lattice boundaries near to the regions of interest 
and yet model accurately late observation times and the exactness of its basic premise 
are all very attractive features of the global lookback scheme. 

It has been demonstrated that electric (magnetic) dipoles can be modeled properly 
in an FD-TD lattice by specifying magnetic (electric) field values on an inner 
boundary surface closely surrounding the dipole. As summarized in Fig. 16, the 
global lookback scheme reproduced the solutions of the electric (magnetic) dipole 
problems only if the magnetic (electric) field components were also calculated on the 
outer boundary of the FD-TD lattice. Truncation errors appeared with any other 
specification of the fields on the inner and outer boundaries of the lattice. Those were 
due primarily to the large field variations characteristic of the singularities of the 
dipole field that were being modeled with a coarse lattice. It is felt that less severe 
field specifications on the inner boundary such as those due to an incident plane wave 
would not have developed the anomalies that were encountered. 

APPENDIX A: EXPLICIT EXPRESSIONS OF THE GLOBAL LOOKBACK SCHEME 
COMPONENTS 

The explicit expressions of the electric field components employed in the global 
lookback scheme are 
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E,(r; t) = t (-lr’ jSTY dSJy F 1 [E, + $p?Z,] y 
j=l I 

+ [E, + rdrE,, y + gJ p,q 1 

+ + (-lr’ lszx dSf” 471 

 ̂

jr, 
so [E, + rf3,E,] Qy 

I I 

+ [E, + drE,] $$-a ,a,H,,~ 

wd + i (-l)ijsyZdSy’q, 
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2[E, + ra,E,] J$ - [E + r&E] ’ $1 

E,(r; t) = + (-l)j lsxy dSJy 9 1 [E, + @E,] q 
jr, J 

+ [E, + rarEz] y - 2 [a,H,] 1 

+ e (-lr’ dST” B(td 
j=l i six 

.I 7 w,+~44l--T- 
I I 

‘“d R) - [E+ ri?,E] . $1 

+ ;- (-lr’ 
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Jr, 1 s’r’i i 
dS;’ F 1 [E, + @E,,] $$ 

+ [E, + rd,E,] v + 2 [a,H,] ( 
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where 

j=1 I 
2 1 [E, + ratE,] y 

+ [E, + r~,.E,] v + 2 [a,H,] 1 

+ + (-lr’ l,+x dS; 

^ 

,r* I 
y 1 [E, + r3,Ez]y 

+ [E, + rdlE,] 9 - 2 [a,H,] 1, 

SW. I . face of inner cube, wherez=Az,, 

SW. Z . face of inner cube, where z = NZ AZ - Az,~., 
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S 2.x. , . face of inner cube, wherey=Ay,, 

S 2x. Z . face of inner cube, where y = NY Ay - Ay,. , 
SW. , . face of inner cube, where x = Ax,, 

S;’ : face of inner cube, where x = N, Ax - Ax, ., . 

The magnetic field components are obtained readily from these expressions with the 
replacements E - H + -E and p,, + sO. 

APPENDIX B: A GENERAL DISCRETIZED FORM OF THE 
EXACT GLOBAL LOOKBACK FIELD REPRESENTATION 

A general discretized form of the exact global lookback representation of the elec- 
tromagnetic field is obtained as follows: Let the surface patch S, be a zone or a 
combination of zones on S centered about the spatial lattice point rp and let I, be a 
time interval centered about the time lattice point t,. Assume that the patches S, 
(p = l,..., P) cover S and that the intervals I, (q = l,..., Q) cover the time interval of 
interest. Let G,(f) and Y&t) be the characteristic functions of the surface S, and of 
the time interval 1, ; e.g., @JT,,) = 1 and Q,(f) z 0 if r is not on S,. The field 
components on S can then be discretized, for example, as 

where Ei(Tp, f4) z EPq. Thus, the global lookback expression (3.7) has the general 
form 

3 P 0 

Q3.2) 

where f,,, is a point on Z and Ej(rm, t,) E Ey”, and where the coefficients 

A$” = ,d{(Fm, F’; t,){ @Jf’) yd(t,, - r’/c)} (B-3) 

Bjp”4” = @(fm, 7; t,,){ @Jf’) Yq(tn - r’/c)}. (B.4) 

Note that these terms reduce simply to integrals over the surface patch S,; they are 
dependent only on the geometry and the choice of interpolation scheme. The 
expression dual to (3.14) is 

Hy”= i 5 t (AjPmgnHy - @jp::EjP9}. (B-5) 
j=1 p=l q=I 

Finally, note that Eqs. (3.7) and (3.12) can be combined into a single matrix 
equation 

F(r; t) = G(r; f’; t) F(r”, i), Q3.6) 
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where F is the six-component field column vector 
- 

F= ; L 1 
and d is the 6 x 6 matrix operator 

(B.7) 

G3.8) 

where the 3 x 3 operators A and B have the components A^! and @. The operator G 
represents a propagator of the fields defined over S to those defined over C. The 
discretized form of (B.6) is simply 

P Q 
F”” = \‘ \’ Gp”g” Fpq, -- 

p=, q=1 

where F”” = F(r;, , t,), Fpq = F(r,, tq), and 

(B. 10) 

where, for example, the matrix AFq” has the components A$:. Expression (B.9) is the 
general discretized form of the exact global lookback field representation. 

APPENDIXC: COMPONENTS OF THE ELECTRIC DIPOLE FIELD 

The components of the electric dipole field are 

Ex(x, YT z, t) = & 13 I./-+ rat-i-1 + t2 m-1 13 
0 

qx, Y? z> t> = (Y/X> E,(x, Y, z, 9, 

E,(x, Y, z, t) = -& iPz2 - (x2 +Y*))v+ ra,.f1 - (x2 +y2) r2[#“t-]}, 

0 

H,(x, Y, z, t) = - & p,.f+ ra:“q, 

HJx, YY =, t> = -(X/Y) ff& Y, z, t>, 

H,(x, Y, 2, t) = 0, 

where 

r = (x2 + y2 + zy. 
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